United States Patent

US008392433B2

(12) 10) Patent No.: US 8,392,433 B2
Tveit (45) Date of Patent: Mar. 5, 2013
(54) SELF-INDEXER AND SELF INDEXING 7,991,720 B2* 82011 Manderetal. 706/45
SYSTEM 8,037,075 B2* 102011 Millett 707/741
2005/0149471 Al* 7/2005 Lassallecccccovvneeenenn 707/1
. . 2007/0255748 Al* 11/2007 Ferragina et al. .. 707/102
(76) Inventor: Amund Tveit, Trondheim (NO) 2007/0285958 ALl* 122007 Platchta et al. 365/68
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Roberto Grossi, et al, High-Order Entropy-compressed Text Indexes,
U.S.C. 154(b) by O days. Proceedings of the Fourteenth Annual ACM-SIKAM Symposium on
Discrete Algorithms, 2003, Society for Industrial and Applied Math-
(21) Appl. No.: 13/086,571 ematics Philadelphia, Philadelphia, PA, USA.
. Nieves R. Brisaboa, et al., A New Approach for Document INdexing
(22) Filed: Apr. 14, 2011 Using Wavelet Trees, DEXA 07 Proceedings of the 18th Interna-
tional Conference on Database and Expert Systems Applications,
(65) Prior Publication Data 2007, IEEE Computer Society, Washington, DC, USA.
US 2012/0265765 Al Oct. 18, 2012 * cited by examiner
(51) Int.CL Primary Examiner — Miranda Le
GOGF 17/30 (2006.01) (74) Attorney, Agent, or Firm — Catherine Napjas; Michael
(52) US.Cl .o 707/748; 707/781 J. Persson; Lawson Persson & Weldon-Francke, PC
(58) Field of Classification Search 707/748
See application file for complete search history. (57 ABSTRACT
. An improved self-indexer comprising a find function that
(56) References Cited caches a last found position and occurrence count of a symbol

U.S. PATENT DOCUMENTS

6,311,183 B1* 10/2001 Cohenccceovvvrvvrnrnnnn. 707/747
6,795,820 B2* 9/2004 Barnettcccoovvivieriiieninns 1/1
7,058,639 B1* 6/2006 Chatterjecetal.co.... 1/1

INDEX 34

on each node level of a word-based wavelet tree for a particu-
lar symbol lookup and only uses a select function to call on
data to the right of the position.

20 Claims, 3 Drawing Sheets

/ 32
SELF-INDEXER 10

RANK, SELECT, DISPLAY, COUNT,
AND LOCATE FUNCTIONS 11

PERSISTENCE
FUNCTION 30

ETDC LIST 36 —‘"—(ASSIGNMENT FUNCTION 20 I(—

[sToPworD DEX 38 |—————— STOPWORD EFFICIENCY
FUNCTION 22

FIND FUNCTION 12

HASH TABLE DECODING <
FUNCTION 14

UNCOMPRESSED WORDS
ON LEAF NODES 16

| ORDERING FUNCTIONIS e

BIGRAMS 24

DATA ARRAY 40 ‘l

L——>_F1ELD TYPES 42
— ~———— | MULTPLERELD |
> FIELD TYPE SUB-INDICES 44 =

URI EFFICIENCY
FUNCTION26 [|

FUNCTION 28

U.S. Patent Mar. 5, 2013 Sheet 1 of 3 US 8,392,433 B2

FIG. 1
RANK, SELECT, DISPLAY, COUNT, 10
AND LOCATE FUNCTIONS 11 /
FIND FUNCTION 12
HASH TABLE DECODING UNCOMPRESSED WORDS
FUNCTION 14 ON LEAF NODES 16

ORDERING FUNCTION18

ASSIGNMENT FUNCTION 20

U.S. Patent Mar. 5, 2013 Sheet 2 of 3 US 8,392,433 B2

FIG. 2
/ 32

] INDEX 34 SELF-INDEXER 10

RANK, SELECT, DISPLAY, COUNT,
AND LOCATE FUNCTIONS 11

N

FIND FUNCTION 12

PERSISTENCE HASH TABLE DECODING |,
FUNCTION 30 FUNCTION 14
UNCOMPRESSED WORDS
ON LEAF NODES 16

ORDERING FUNCTION18

A

ETDCLIST 36 ASSIGNMENT FUNCTION 20

STOPWORD EFFICIENCY
TO
STOPWORD INDEX 38 FUNCTION 22

N

BIGRAMS 24

DATA ARRAY 40 URI EFFICIENCY
FUNCTION 26

—>| FIELD TYPES 42 T MULTIPLE FIELD

FUNCTION 28

A

—>! FIELD TYPE SUB-INDICES 44

US 8,392,433 B2

Sheet 3 of 3

Mar. 5, 2013

U.S. Patent

721 ONTIOLS ATLNALSISHAd _

ozt SITHNVIVA 911 XdaNI a8 - ¢11 8aTdid
D14 HDNIIOLS | ONIOVIdHY NS ONILVEED |<—71 DAIF ONINDISSV HTdLLINN DNIAIAOHd
0T1 S840DV 80T NOLLONNA 01 AVIIY P01 AVIAY 70T SILNAINNDOA
DNIAIAOYL <1 TEdNHONILNOFXT VivVad ONILIOS VIVAONIXAANI (< RN ONIZINVDIO
001 5ALd 86 DA1H
DNIEOLS DNINDISSY /
96 J4AIO 6 STIOMJOLS 6 DALY 06 DAL 88 STIVALOLS
DNIAEISTId DONIXIANT DONIFIOLS ONINDISSY | <] DNILVYIVJHS

|

| 08 IDEHD ONINNOLNTL |——)

)

LSHIVI-NON DNIHOMVES

5] 8 S0FHO ONINNOLNE _

| 98 DQ1E DNINOISSY |

_ 8 SINHNNOO DNIHOUVES |« 92 WNHL LSENVY ONLINNOD |«— vL SWMEL ONLINOS _Tﬁ Z4 SINANNOOC ONTINVY _

“ 0L SCMOM AASSTITNOINN ONDIOLS _

| 9 NV ONISYAIONT |5/ 99 AMINE MAN ONLLVERD |5/ 89 MNVA ONINOLS % ONLLYTDTVO |

1

| 29 4T4VL HSVH ONILTNSNOD |<—| 09 HOON ONISYHAVL <—— 85 1AV HSVH ONILVED |«—

DNIAODIA

9¢ INJNND0Aa

/

o

| ¥$ NOLLONN LOHTAS ONISO [<— zs NOLIISOd DNTHOVD _A||A 05 ITIL ONIHOUVES |

€ "OId

_ 87 NOILDHATIOD VIVA ONISSIODV _

US 8,392,433 B2

1
SELF-INDEXER AND SELF INDEXING
SYSTEM

FIELD OF THE INVENTION

The present invention relates to self-indexing compressed
texts, and in particular, to self-indexing word-based wavelet
trees.

BACKGROUND

Itis desirable that data storage use as little space or memory
as possible. To this end, mechanisms for lossless data com-
pression have been developed. Classic Huftman coding, for
example, refers to the use of a variable-length code table for
encoding a source symbol (such as a character in a file) where
the variable-length code table has been derived in a particular
way based on the estimated probability of occurrence for each
possible value of the source symbol. Huffman coding was
advanced by wavelet trees, as described in Grossi, Roberto, et
al., Hicu-Orper ENTROPY-COMPRESSED TEXT INDEXES, Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, 2003. A wavelet tree, as described by
Grossi et al., is a data structure that uses character level
compression, like Huffman coding, to represent data in a
compressed and tree-based data structure that enables search-
ing. Such wavelet trees were again advanced by word-based
wavelet trees, which encode words instead of characters in the
tree, as described in Brisaboa, Nieves R., et al., A Nrw
APPROACH FOR DOCUMENT INDEXING UsSING WAVELET TREES, 2007.
The teachings of this article are hereby incorporated by ref-
erence.

Word-based wavelet trees operate as follows. The fre-
quency of words or phrases is counted. Each word is assigned
a byte string according to its frequency. The most common
words are replaced with the shortest byte string, i.e. a single
byte. Less common words are replaced with longer byte
strings, i.e. 2 or more bytes. Additionally, each byte string
uses end tagged dense code (ETDC), which is a compression
method that assigns byte codes to words, where the last byte
of'each byte code is used as an “end tag” by marking its first
bit to “1”” The use of ETDC makes random access in com-
pressed byte strings possible. This is as opposed to bit based
Huffman coding where random access is not possible because
it is unknown where the encoded characters start and stop.

Although word-based wavelet trees are an improvement
over the prior art, their indexing is still not optimally efficient.
Current self-indexers include only the basic rank, select, dis-
play, locate, and count functions described in Brisaboa, et al.
Therefore there is a need for a word-based wavelet tree self-
indexer that optimizes the indexing of word-based wavelet
trees by including functions beyond these basic functions.

SUMMARY OF THE INVENTION

The present invention includes a self-indexer, a self-index-
ing system, and a self-indexing method.

The self-indexer of the present invention is used to index a
data collection made up of many documents. As used herein,
“documents” may refer to any set of data, such as a word
document, a word, a phrase, a symbol, a binary string, a
multimedia stream, an audio file, etc . . . The self-indexer may
index anything, but requires a dictionary that maps from the
document to the ETDC in the data collection. The data col-
lection is represented in a compressed format by a word-
based wavelet tree, as described above.

20

25

30

35

40

45

50

55

60

65

2

In its most basic form, the self-indexer of the present inven-
tion includes standard rank, select, display, locate, and count
functions, and a find function. Using current wavelet tree
search methods, a large set of results (e.g. 100-100,000
results) are returned for the given query terms, and these
results are ranked, with only the top n results displayed, where
n is a pre-designated number. This requires repeated calls to
use the locate function for the same term to find many, or all,
occurrences of it. The select function is heavily used in meth-
ods using the locate function, e.g. for finding the position in
the original string for the n’th occurrence of'a symbol. When
searching for repeated occurrences of a symbol, the select
function duplicates work, as it requires working on the entire
byte string on repeated calls to use the select function on the
same tree node. Such superfluous work reduces performance.

A better approach is used by the find function of the self-
indexer of the present invention. This approach involves start-
ing from the position on the byte string where the last occur-
rence was found. The find function caches the last found
position and occurrence count of a symbol, such as a phrase,
word, or character, on each node level of the wavelet tree for
a particular symbol lookup and only uses the select function
to call on data to the right of that position. In this manner, each
subsequent use of the select function to call will be required to
cover less and less data, as opposed to re-selecting over the
entire data each time. The cache is stored in a hash table with
the pointer value of the node, i.e. the numerical memory
address, as the key.

A preferred embodiment of the self-indexer of the present
invention also includes a hash table decoding function for
decoding a document from the word-based wavelet tree back
to its original representation. A hash table is a data structure
that uses a hash function to map identifying values, or “keys,”
to their associated “values.” Decoding a document uses the
rank function heavily. When the rank function is called on one
node, the next time the decoding function navigates to the
same node for the next word in the document, the previous
rank value should be incremented by one with no need to call
on the rank function again.

The hash table decoding function of the present invention
uses a hash table with a key of the pointer value of a node,
which is the numerical memory address, and a corresponding
value of the integer provided by the rank function, at that
pointer value, hereinafter referred to as the “rank.” Each time
a node is traversed for decoding, the hash table is consulted.
If the traversed node is indicated in the key of the hash table,
then the rank in the corresponding value of the hash table is
increased by one. If the traversed node is not indicated in the
key of the hash table, then a new entry in the key is created for
that pointer value of the traversed node and the rank at that
pointer value is calculated and stored in the value of the hash
table corresponding to the new entry in the key of the hash
table. Uncompressed words or phrases may be stored directly
on leaf nodes, which are nodes that have no child nodes. This
gives a slight storage penalty compared to looking them up in
the dictionary with the compressed code gotten by traversing,
but improves performance in the form of reducing decoding
latency.

A preferred embodiment of the self-indexer of the present
invention also includes an ordering function for ranking
documents within the index. The most common ranking algo-
rithm in information retrieval is TF*IDF. TF is the term fre-
quency, which is how many times a term, e.g. a word, appears
in a document. IDF is the inverse document frequency, which
is how many documents a term appears in within the whole
data collection. TF*IDF is then summed for each document
that is to be ranked.

US 8,392,433 B2

3

The ordering function of the present invention, on the other
hand, uses what the inventor calls an “and-search” function.
And-search looks to the presence of all query terms in all
result documents that are of most interest to rank. Ranking
using and-search is performed in the following way: Query
terms are sorted by occurrence in the entire data collection.
Query terms include a rarest query term, which is the query
term with the lowest occurrence in the data collection, and
one or more non-rarest query terms. The rarest query term is
then counted with TF. A complete search for documents con-
taining the rarest query term is then performed. For each
document in which a rarest query term occurs, a fast, proba-
bilistic check is performed on the document to check for the
non-rarest query terms. A probabilistic search is a search
performed with a certain probability of error. Because a
probabilistic search is not a complete search, it is faster than
acomplete search. The error parameters may be set so that the
search has varying levels of likelihood of accuracy. If the
presence of the non-rarest query terms is unlikely, then that
document is skipped and the next document goes through the
probabilistic check. If the presence of the non-rarest query
terms is likely, then an actual check for the non-rarest query
terms is performed, but only the first occurrence of each is
found.

The and-search method of the ordering function means that
only the rarest query term gets a correct TF count. The non-
rarest query terms get underestimated TF counts. The rarest
query term is likely to have the highest information value in
the query, i.e. frequent words are usually stopwords. As the
query terms are sorted for occurrence in the data collection,
and the rarest query term has highest weight, multiplication
with the IDF, as in the standard method of ranking described
above, is skipped. The ranking score with the ordering func-
tion of the present invention therefore becomes ranking
score=sum(estimated TF counts for each query term). This
gives a fast ranking approximation that does not require many
iterations.

A preferred embodiment of the self-indexer of the present
invention also includes an assignment function for assigning
ETDCs. The optimally compressed wavelet index with
ETDCs assigns the most frequent word the shortest ETDC
and the least frequent word the longest ETDC code. Such
assignment requires knowledge of all terms in advance,
which is not practical because while indexing incoming docu-
ments, new and unseen words might arrive.

The assignment function of the present invention assigns
the next available ETDC, regardless of the ETDC’s length, to
a previously unseen word. The assignment function does not
give optimal compression, as a previously unseen word may
beassigned along ETDC and the word may end up being very
frequently used. The assignment function does facilitate the
indexing function, however, and in practice, the compression
functions well if the data collection is seeded with an initial
set of documents before turning on the incremental ETDC
creation and indexing of the assignment function. This is
because many high frequency terms will have occurred in the
seed documents and will have already been assigned short
ETDCs.

In its most basic form, the self-indexing system of the
present invention includes the self-indexer of the present
invention and a data collection.

In a preferred embodiment of the self-indexing system of
the present invention, the self-indexing system also includes
a stopword index and the self-indexer also includes a stop-
word efficiency function for efficiently dealing with stop-
words. Stopwords are words of very high frequency, e.g. “is,”
“are,” “the” in the English language. Stopwords take up a lot

20

25

30

35

40

45

50

55

60

65

4

of'room in data collections without adding much information.
The stopword efficiency function of the present invention
assigns a common, short ETDC for each stopword. The
ETDC may be a single byte, for example. Whenever this
ETDC appears, the stopword can be found in the separate
stopword index—an index which only has stopwords and
separate ETDCs, and the order of the stopwords is preserved
from the original data collection. If the sentence, “This is a
fish,” is indexed, for example, the words “this,” “is,” and “a”
are stopwords, that would be stored in the separate stopword
index. The separate stopword index may be stored on a less
expensive medium than the data collection full of non-stop-
words. Phrases containing stopwords only, such as “to be or
not to be,” may be looked up directly in the stopword index.

In some embodiments of the stopword efficiency function,
bigrams containing only stopwords are also assigned ETDCs
and stored in the stopword index. The bigram “to be,” for
example, would be assigned an ETDC, rather than each of the
stopwords “to” and “be” being assigned an ETDC. Queries
could then be converted to queries for bigrams. The advantage
of this bigram indexing is that stopwords that contain little
information themselves will not be assigned the shortest
ETDCs because the bigrams will occur less frequently than
the stopwords separately. The bigrams will be assigned
longer ETDCs based on their lower frequency, and will give
fewer results. To find the phrase “to be or not to be,” when
broken into the stopwords “to,” “be,” “not,” and “or,” for
example, may not be manageable on a large data collection.
Condensing the terms into “to be,” “not,” and “or,” however,
may be.

In a preferred embodiment of the self-indexing system of
the present invention, the self-indexing system also includes
a data array and the self-indexer also includes a URI effi-
ciency function for efficiently dealing with URIs for docu-
ments. A wavelet tree has no representation of documents in
itself—it is merely an index of sequences of words. The URI
efficiency function of the present invention uses the separate
data array that supports documents with URI addresses. This
data array includes a number of elements, each corresponding
to a document in the data collection, and each including a start
position of the document in the data collection, the document
length, and the URI for the document. The number of ele-
ments in the data array therefore corresponds to the total
number of documents in the data collection with URI
addresses. The array is sorted on start position. The self-
indexer command “findUriForTermOccurence,” at a position
in the wavelet tree accesses the start position in the data array
with the URI address, thus correlating a document in the
wavelet tree with its URI.

In a preferred embodiment of the self-indexing system of
the present invention, the data collection includes multiple
fields and sub-indices for each field and the self-indexer also
includes a multiple field function for efficiently dealing with
multiple fields. An example of multiple fields is one title field
and one content field, both of which should be indexed. The
multiple field function of the present invention assigns
ETDC:s to field types. If a field is called “person names,” for
example, and a person name is found, the value is replaced
with the ETDC and stored in a sub-index for that field type.

Finally, a preferred embodiment of the self-indexing sys-
tem of the present invention also includes a persistence func-
tion for facilitating persistent storage of the word-based
wavelet tree. This is achieved by using a regular directory
structure with a standard encoding, such as base64.e.g.
encoded_term_prefix, or hex_values, e.g. encoded_term_
prefix, as the path. The preferred wavelet tree has a 128-tree,

US 8,392,433 B2

5

so the directory structure should have a maximum 128 direc-
tories per directory, as well as one or a few data files.

The following provides an example of some of the func-
tions of a preferred self-indexer of the present invention. For
storing, assume the terms “windows” and “cloud” are
encoded as [0x39,0xal,0xb7] and [0x39,0xal,0x44], respec-
tively. With the common prefix [0x39,0xal], the directory
structure may be index/0x39/0xal/node.dat, with node.dat
containing ‘Oxb7,x44’. This may be stored as json, avro,
thrift, or protocolbuffer for easy retrieval back. Storing in free
text is likely to not be a penalty as seeking plus reading from
HDD or SSD takes relatively much more time than updating
the node data structure. This is a debugging advantage, and
makes it easier to auto-generate a wavelet tree with any type
of scripting language, for example.

For retrieval, assume a search for “cloud.” First, the encod-
ing for “cloud” is looked up in a dictionary, returning the
result [0x39,0xal,0x44]. Then the file ‘index/0x39/0xal/
node.dat’ is fetched/decoded into memory as a node. This
may be stored in membase, memcache, or redis to have some
kind of caching. Intermediate files, e.g. ‘index/node.dat’,
‘index/0x39/node.dat’ may need to be fetched in order to
support searching. The higher up, the more likely they are to
be in memory. With this approach one could start with an
empty tree and just have a training set of query logs to run
through. Finally, 0x44 is searched for in the node, or the last
byte in the encoding of “cloud” from there, and propagated.

For an example of estimated latency on SSD and HDD: The
further down in the wavelet, the smaller the data files are.
There is also a need to fetch files along the path, e.g. ‘index/
0x39/node.dat’ and ‘index/0x39/0xal/node.dat,” as described
above, in order to support searching. The time needed for this,
assuming it is IO bounded, is practically seek-time bounded,
or possibly faster due to OS directory handling. This may
result in real times of 5,000-15,000 us on a regular hard drive
and 10-100 ps on an SSD. This is an easy structure to main-
tain, as it is incremental only through an append function, and
will work well on smartphones with property files. To sum-
marize, per query on SSD, the latency would be:

Inum query terms |*|average(query encoding length)|*
(10 to 100 ps).

For example, 4*3%(10 to 100 pus)=120 to 1200 ps, or 0.12 to
1.2 ms for a 4-keyword query.

The self-indexing method of the present invention includes
step of accessing the data collection represented by the word-
based wavelet tree and steps for performing each of the func-
tions of the self-indexer and self-indexing system of the
present invention, as described above.

Specifically, the find function includes the step of search-
ing the word-based wavelet tree. This searching step includes
the steps of caching a last found position and occurrence
count of a symbol on each node level of the word-based
wavelet tree for a particular symbol lookup and using a select
function to call only on data to the right of the last found
position.

The hash table decoding function includes the step of
decoding a document from the word-based wavelet tree back
into its original representation. The decoding step includes
the steps of creating a hash table with the key of the hash table
being a pointer value of a node and the corresponding value of
the hash table being the rank at that pointer value; traversing
a node for decoding; consulting the hash table each time a
node is traversed; increasing the rank in the corresponding
value of the hash table if the traversed node is indicated in the
key of the hash table; creating a new entry in the key of the
hash table for a pointer value of the traversed node if the

20

25

30

35

40

45

50

55

60

65

6

traversed node is not indicated in the key of the hash table; and
calculating and storing a rank of the pointer value in the value
of'the hash table corresponding to the new entry in the key of
said hash table if the traversed node is not indicated in the key
of the hash table.

Having uncompressed words on leaf nodes includes the
step of storing uncompressed words on leaf nodes of the
wavelet tree.

The ordering function includes the step of ranking docu-
ments within the data collection. This ranking step includes
the steps of sorting query terms by occurrence within the data
collection, where query terms include a rarest query term and
at least one non-rarest query term; counting the rarest query
term with term frequency; searching for documents including
the rarest query term; performing a probabilistic check for the
non-rarest query terms when a document including the rarest
query term is found; searching for a first occurrence of each
non-rarest query term if the probabilistic check indicates a
likelihood of a presence of the non-rarest query terms; and
performing a probabilistic check for the non-rarest query
terms on the next document including the rarest query term if
the probabilistic check does not indicate a likelihood of a
presence of the non-rarest query terms.

The assignment function includes the step of assigning a
next available ETDC from an ordered list of ETDCs to a
previously unseen word.

The stopword efficiency function includes the step of sepa-
rating stopwords from the data collection. The separating
stopwords step includes the steps of assigning an ETDC to
each stopword; storing the ETDCs assigned to each stopword
and the stopwords in a stopword index distinct from the data
collection; indexing the stopword index; and preserving the
order of the stopwords in the stopword index. The bigram
efficiency function adds to these steps by also including the
steps of assigning ETDCs to bigrams comprised of stop-
words; and storing the ETDCs assigned to each bigram and
the bigrams in the stopword index.

The URI efficiency function includes the step of organizing
documents with URI addresses. Organizing step includes the
steps of indexing a data array, where the data array includes at
least one element, each element corresponds to a document
within the data collection with a URI address, and each ele-
ment includes the start position of the document within the
data collection, the length of the document, and the URI of the
document; sorting the data array based on the start positions
of'each of the at least one element; executing a URI efficiency
function at a position in the word-based wavelet tree; and
providing access to the element of the data array that corre-
sponds to the position in the word-based wavelet tree upon
performing the executing step.

The multiple field function includes the step of providing
multiple fields. The providing multiple fields step includes
the steps of assigning an ETDC to each field type of the data
collection; creating a sub-index for each field type; replacing
avalue corresponding to a field type with the ETDC assigned
to the field type in the assigning step when the value corre-
sponds to a field type; and storing the ETDC in the sub-index
for the field type.

The persistence function includes the step of storing the
word-based wavelet tree persistently by using a directory
structure with an encoding as a path.

Therefore it is an aspect of the present invention to provide
a self-indexer with a function for efficiently finding several or
all occurrences of a symbol.

It is a further aspect of the present invention to provide a
self-indexer with a function for efficiently decoding a docu-
ment from a wavelet tree back to its original representation.

US 8,392,433 B2

7

It is a further aspect of the present invention to provide a
self-indexer with a function for efficiently ranking search
results.

It is a further aspect of the present invention to provide a
self-indexing system with a function for supporting incre-
mentally indexing documents without knowing all symbol
types in advance.

It is a further aspect of the present invention to provide a
self-indexing system with a function for efficiently dealing
with stopwords.

It is a further aspect of the present invention to provide a
self-indexing system with a function for efficiently dealing
with URIs for documents.

It is a further aspect of the present invention to provide a
self-indexing system with a function for efficiently dealing
with multiple fields.

It is a further aspect of the present invention to provide a
self-indexing system with a function for efficiently persisting
the data structure.

It is a further aspect of the present invention to provide a
self-indexing method including steps for performing the
functions of the self-indexer and self-indexing system of the
present invention.

These aspects of the present invention are not meant to be
exclusive and other features, aspects, and advantages of the
present invention will be readily apparent to those of ordinary
skill in the art when read in conjunction with the following
description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing the functions of the
self-indexer of the present invention.

FIG. 2 is a block diagram showing the functions of the
self-indexing system of the present invention.

FIG. 3 is a block diagram showing the steps of the self-
indexing method of the present invention.

DETAILED DESCRIPTION

Referring to FIG. 1, the functions of self-indexer 10 of the
present invention are shown.

Self-indexer 10 includes rank, select, display, count, and
locate functions 11; find function 12; hash table decoding
function 14, including having uncompressed words on leaf
nodes 16; ordering function 18; and assignment function 20.

Rank, select, display, count, and locate functions 11 are
standard self-indexer functions, as described in Brisaboa, et
al.

Find function 12 involves starting from the position on the
byte string where the last occurrence of a symbol was found.
Find function 12 caches the last found position and occur-
rence count of a symbol, such as a phrase, word, or character,
on each node level of the wavelet tree for a particular symbol
lookup and only uses the select function to call on data to the
right of that position. In this manner, each subsequent use of
the select function to call will be required to cover less and
less data, as opposed to re-selecting over the entire data each
time.

Hash table decoding function 14 uses a hash table with a
key of the pointer value of a node, which is the numerical
memory address, and a corresponding value of the integer
provided by the rank function, at that pointer value. Each time
a node is traversed for decoding, the hash table is consulted.
Ifthe traversed node is indicated in the key of the hash table,
then the rank in the corresponding value of the hash table is
increased by one. If the traversed node is not indicated in the

20

25

30

35

40

45

50

55

60

65

8

key of the hash table, then a new entry in the key is created for
that pointer value of the traversed node and the rank at that
pointer value is calculated and stored in the value of the hash
table corresponding to the new entry in the key of the hash
table. Uncompressed words or phrases may be stored directly
on leaf nodes 16.

Ordering function 18 uses “and-search.” And-search looks
to the presence of all query terms in all result documents that
are of most interest to rank. Ranking using and-search is
performed in the following way: Query terms are sorted by
occurrence in the entire data collection. Query terms include
a rarest query term, which is the query term with the lowest
occurrence in the data collection, and one or more non-rarest
query terms. The rarest query term is then counted with TF. A
search for documents containing the rarest query term is then
performed. For each document in which a rarest query term
occurs, a fast, probabilistic check is performed on the docu-
ment to check for the non-rarest query terms. If the presence
of the non-rarest query terms is unlikely, then that document
is skipped and the next document goes through the probabi-
listic check. If the presence of the non-rarest query terms is
likely, then an actual check for the non-rarest query terms is
performed, but only the first occurrence of each is found.

Assignment function 20 assigns the next available ETDC,
regardless of the ETDC’s length, to a previously unseen
word.

Now referring to FIG. 2, the features of self-indexing sys-
tem 32 are shown. Self-indexing system 32 includes data
collection 34 with field types 42 and field type indices 44,
ETDC list 36, stopword index 38, data array 40, self-indexer
10 with the following functions: select, display, count, and
locate functions 11; find function 12; hash table decoding
function 14, including having uncompressed words on leaf
nodes 16; ordering function 18; assignment function 20; stop-
word efficiency function 22, including bigram 24 efficiency;
URI efficiency function 26; and multiple field function 28,
and persistence function 30.

The following functions of self-indexer 10 are as described
above: select, display, count, and locate functions 11; find
function 12; hash table decoding function 14, including hav-
ing uncompressed words on leaf nodes 16; ordering function
18; and assignment function 20. In self-indexing system 32,
ETDC list 36, used in assignment function 20, is part of
self-indexing system 32. A line is shown between ETDC list
36 and assignment function 20 to indicate that ETDC list 36
is used in assignment function 20.

Self-indexing system 32 includes stopword index 38 for
use with stopword efficiency function 22 of self-indexer 10. A
line is shown between stopword index 38 and stopword effi-
ciency function 22 to indicate that stopword index 38 is used
in stopword efficiency function 22. Stopword efficiency func-
tion 22 assigns a common, short ETDC for each stopword.
The ETDC may be a single byte, for example. Whenever this
ETDC appears, the stopword can be found in separate stop-
word index 38—an index which only has stopwords and
separate ETDCs, and the order of the stopwords is preserved
from the original data collection. Bigrams 24, including two
stopwords, are also assigned an ETDC and stored in stopword
index 38.

Self-indexing system 32 includes data array 40 for use with
URI efficiency function 26 of self-indexer 10. A line is shown
between data array 40 and URI efficiency function 26 to
indicate that data array 40 is used in URI efficiency function
26. URI efficiency function 26 uses separate data array 40 that
supports documents with URI addresses. Data array 40
includes a number of elements, each corresponding to a docu-
ment in data collection 34, and each including a start position

US 8,392,433 B2

9

of the document in data collection 34, the document length,
and the URI for the document. The number of elements in
data array 40 therefore corresponds to the total number of
documents in data collection 34 with URI addresses. Data
array 40 is sorted on start position. The self-indexer command
“findUriForTermOccurence,” at a position in the wavelet tree
accesses the start position in data array 40 with the URI
address, thus correlating a document in the wavelet tree with
its URL

In self-indexing system 32, index 34 includes field types 42
and field type sub-indices 44. This is indicated by an arrow
pointing from index 34 to field types 42 and field type sub-
indices 44. A line is shown between field types 42/field type
sub-indices 44 and multiple field function 28 to indicate that
field types 42/field type sub-indices 44 are used in multiple
field function 28.

Multiple field function 28 assigns ETDCs to field types 42.
If a field is called “person names,” for example, and a person
name is found, the value is replaced with the ETDC and stored
in a sub-index 44 for that field type.

Self-indexing system 32 also includes persistence function
30. Persistence function 30 facilitates persistent storage of the
word-based wavelet tree. This is achieved by using a regular
directory structure with a standard encoding, such as base64,
e.g. encoded_term_prefix, or hex_values, e.g. encoded_
term_prefix, as the path. The preferred wavelet tree has a
128-tree, so the directory structure should have a maximum
128 directories per directory, as well as one or a few data files.

Self-indexing method 46, includes steps for accessing the
data collection 48 represented by the word-based wavelet tree
and steps for performing all of the following functions of
self-indexer 10 and self-indexing system 32 as described
above: find function 12; hash table decoding function 14,
including having uncompressed words on leaf nodes 16;
ordering function 18; assignment function 20; stopword effi-
ciency function 22, including bigram 24 efficiency; URI effi-
ciency function 26; multiple field function 28; and persis-
tence function 30.

Specifically, find function 12 includes the step of searching
the word-based wavelet tree 50. Searching step 50 includes
the steps of caching a last found position and occurrence
count 52 of a symbol on each node level of the word-based
wavelet tree for a particular symbol lookup and using a select
function 54 to call only on data to the right of the last found
position.

Hash table decoding function 14 includes the step of
decoding a document 56 from the word-based wavelet tree
back into its original representation. Decoding step 56
includes the steps of creating a hash table 58 with the key of
the hash table being a pointer value of a node and the corre-
sponding value of the hash table being the rank at that pointer
value; traversing a node 60 for decoding; consulting the hash
table 62 each time a node is traversed; increasing the rank 64
in the corresponding value of the hash table if the traversed
node is indicated in the key of the hash table; creating a new
entry 66 in the key of the hash table for a pointer value of the
traversed node if the traversed node is not indicated in the key
of'the hash table; and calculating and storing a rank 68 of the
pointer value in the value of the hash table corresponding to
the new entry in the key of said hash table if the traversed node
is not indicated in the key of the hash table.

Having uncompressed words on leaf nodes 16 includes the
step of storing uncompressed words 70 on leaf nodes of the
wavelet tree.

Ordering function 18 includes the step of ranking docu-
ments 72 within the data collection. Ranking step 72 includes
the steps of sorting query terms 74 by occurrence within the

20

25

30

35

40

45

50

55

60

65

10

data collection, where query terms include a rarest query term
and at least one non-rarest query term; counting the rarest
query term 76 with term frequency; searching for documents
78 including the rarest query term; performing a probabilistic
check 80 for the non-rarest query terms when a document
including the rarest query term is found; searching for a first
occurrence of each non-rarest query term 82 if the probabi-
listic check indicates a likelihood of a presence of the non-
rarest query terms; and performing a probabilistic check 84
for the non-rarest query terms on the next document including
the rarest query term if the probabilistic check does not indi-
cate a likelihood of a presence of the non-rarest query terms.

Assignment function 20 includes the step of assigning a

next available ETDC 86 from an ordered list of ETDCs to a
previously unseen word.
Stopword efficiency function 22 includes the step of separat-
ing stopwords 88 from the data collection. Separating stop-
words step 88 includes the steps of assigning an ETDC 90 to
each stopword; storing the ETDCs 92 assigned to each stop-
word and the stopwords in a stopword index distinct from the
data collection; indexing the stopword index 94; and preserv-
ing the order 96 of the stopwords in the stopword index.
Bigram efficiency function 24 adds to these steps by also
including the steps of assigning ETDCs 98 to bigrams com-
prised of stopwords; and storing 100 the ETDCs assigned to
each bigram and the bigrams in the stopword index.

URI efficiency function 26 includes the step of organizing
documents with URI addresses 102. Organizing step 102
includes the steps of indexing a data array 104, where the data
array includes at least one element, each element corresponds
to a document within the data collection with a URI address,
and each element includes the start position of the document
within the data collection, the length of the document, and the
URI of the document; sorting the data array 106 based on the
start positions of each of the at least one element; executing a
URI efficiency function 108 at a position in the word-based
wavelet tree; and providing access 110 to the element of the
data array that corresponds to the position in the word-based
wavelet tree upon performing executing step 108.

Multiple field function 28 includes the step of providing
multiple fields 112. Providing step 112 includes the steps of
assigning an ETDC 114 to each field type of the data collec-
tion; creating a sub-index 116 for each field type; replacing a
value 118 corresponding to a field type with the ETDC
assigned to the field type in assigning step 114 when the value
corresponds to a field type; and storing the ETDC 120 in the
sub-index for the field type.

Persistence function 30 includes the step of storing the
word-based wavelet tree persistently 122 by using a directory
structure with an encoding as a path.

Although the present invention has been described in con-
siderable detail with reference to certain preferred versions
thereof, other versions would be readily apparent to those of
ordinary skill in the art. Therefore, the spirit and scope of the
description should not be limited to the description of the
preferred versions contained herein.

I claim:

1. A self-indexing software product comprising a non-
transitory computer-readable medium in which program
instructions are stored, which instructions, when read by a
computer, cause the computer to index a data collection com-
prising a plurality of documents wherein the data collection is
represented by a word-based wavelet tree comprising a plu-
rality of nodes and node levels, and to further index a data
array comprising at least one element, wherein each of the at
least one element corresponds to a document within the data

US 8,392,433 B2

11

collection with a uniform resource identifier (URI) address,
wherein said self-indexing software product comprises:
rank function software code for returning a number of
occurrences of a symbol within a sequence of symbols in
the word-based wavelet tree;
select function software code for returning a position of the
jth occurrence of a symbol within a sequence of symbols
in the word-based wavelet tree;

display function software code for returning a symbol at a

position in the word-based wavelet tree;
count function software code for returning a number a of
occurrences of a symbol in the word-based wavelet tree;

locate function software code for returning a position of an
occurrence of a symbol in the word-based wavelet tree;

find function software code for caching a last found posi-
tion and occurrence count of a symbol on each node
level of the word-based wavelet tree for a particular
symbol lookup and using said select function software
code to call only on data to the right of the last found
position;

URI efficiency function software code:

wherein each of the at least one element comprises a start
position of the document within the data collection, a
length of the document, and a URI of the document;

wherein the data array is sorted based on the start posi-
tions of each of the at least one element; and

wherein execution of said URI efficiency function soft-
ware code at a position in the word-based wavelet tree
provides access to the at least one element of the data
array that corresponds to the position in the word-
based wavelet tree at execution; and

hash table decoding function software code for decoding a

document from the word-based wavelet tree back into its

original representation, said hash table decoding func-

tion software code comprising a hash table:

wherein a key of said hash table is a pointer value of a
node and a corresponding value of'said hash table is a
rank at the pointer value;

wherein each time a node is traversed for decoding, said
hash table is consulted;

wherein if the traversed node is indicated in the key of
said hash table, then the rank in the corresponding
value of said hash table is increased by one; and

wherein if the traversed node is not indicated in the key
of said hash table, then a new entry in the key of said
hash table is created for a pointer value of the tra-
versed node and the rank at the pointer value is cal-
culated and stored in the value of said hash table
corresponding to said new entry in the key of said hash
table.

2. The self-indexing software product as claimed in claim
1, wherein uncompressed words are stored on leaf nodes of
the word-based wavelet tree.

3. The self-indexing software product as claimed in claim
1, further comprising ordering function software code for
ranking documents within the data collection:

wherein query terms comprising a rarest query term and at

least one non-rarest query term are sorted by occurrence
within the data collection;

wherein the rarest query term is counted with term fre-

quency;

wherein documents including the rarest query term are

searched for; and

wherein when a document including the rarest query term

is found, a probabilistic check for the non-rarest query
terms is performed;

20

25

30

35

40

45

50

55

60

65

12

wherein if the probabilistic check indicates a likelihood
of'apresence of the non-rarest query terms, then a first
occurrence of each non-rarest query term is searched
for; and

wherein if the probabilistic check does not indicate a
likelihood of a presence of the non-rarest query terms,
then a probabilistic check for the non-rarest query
terms is performed on a next document including the
rarest query term.

4. The self-indexing software product as claimed in claim
1, further comprising an ordered list of end tagged dense
codes (ETDCs) and assignment function software code for
assigning a next available ETDC from said ordered list to a
previously unseen word.

5. A self-indexing system stored on a non-transitory com-
puter-readable medium and executable by a computer com-
prising:

a computer;

a data collection comprising a plurality of documents
stored on said non-transitory computer-readable
medium,;

a data array comprising at least one element, wherein each
of said at least one element corresponds to a document
within said data collection with auniform resource iden-
tifier (URI) address; and

a self-indexing software product comprising a non-transi-
tory computer-readable medium in which program
instructions are stored, which instructions, when read by
a computer, cause the computer to index said data col-
lection and said data array, wherein said data collection
is represented by a word-based wavelet tree comprising
a plurality of nodes and node levels, and wherein said
self-indexing software product comprises:
rank function software code for returning a number of

occurrences of a symbol within a sequence of sym-
bols in the word-based wavelet tree;
select function software code for returning a position of
the jth occurrence of a symbol within a sequence of
symbols in the word-based wavelet tree;
display function software code for returning a symbol at
a position in the word-based wavelet tree;
count function software code for returning a number a of
occurrences of a symbol in the word-based wavelet
tree;
locate function software code for returning a position of
an occurrence of a symbol in the word-based wavelet
tree;
find function software code for caching a last found
position and occurrence count of a symbol on each
node level of the word-based wavelet tree for a par-
ticular symbol lookup and using said select function
software code to call only on data to the right of the
last found position;
URI efficiency function software code:
wherein each of the at least one element comprises a
start position of the document within said data col-
lection, a length of the document, and a URI of the
document;
wherein said data array is sorted based on the start
positions of each of said at least one element; and
wherein execution of said URI efficiency function
software code at a position in the word-based wave-
let tree provides access to said at least one element
of said data array that corresponds to the position in
the word-based wavelet tree at execution; and
hash table decoding function software code for decoding
a document from the word-based wavelet tree back

US 8,392,433 B2

13

into its original representation, said hash table decod-

ing function software code comprising a hash table:

wherein a key of said hash table is a pointer value of a
node and a corresponding value of said hash table is
a rank at the pointer value;

wherein each time a node is traversed for decoding,
said hash table is consulted;

wherein if the traversed node is indicated in the key of
said hash table, then the rank in the corresponding
value of said hash table is increased by one; and

wherein if the traversed node is not indicated in the
key of'said hash table, then a new entry in the key of
said hash table is created for a pointer value of the
traversed node and the rank at the pointer value is
calculated and stored in the value of said hash table
corresponding to said new entry in the key of said
hash table.

6. The self-indexing system as claimed in claim 5, wherein
uncompressed words are stored on leaf nodes of the wavelet
tree.

7. The self-indexing system as claimed in claim 5, wherein
said self-indexing software product further comprises order-
ing function software code for ranking documents within said
data collection:

wherein query terms comprising a rarest query term and at

least one non-rarest query term are sorted by occurrence
within said data collection;

wherein the rarest query term is counted with term fre-

quency;

wherein documents including the rarest query term are

searched for; and
wherein when a document including the rarest query term
is found, a probabilistic check for the non-rarest query
terms is performed;
wherein if the probabilistic check indicates a likelihood
of'apresence of the non-rarest query terms, then a first
occurrence of each non-rarest query term is searched
for; and
wherein if the probabilistic check does not indicate a
likelihood of a presence of the non-rarest query terms,
then a probabilistic check for the non-rarest query
terms is performed on a next document including the
rarest query term.
8. The self-indexing system as claimed in claim 5:
wherein said self-indexing system further comprises an
ordered list of end tagged dense codes (ETDCs); and

wherein said self-indexing software product further com-
prises assignment function software code software code
for assigning a next available ETDC from said ordered
list to a previously unseen word.

9. The self-indexing system as claimed in claim 5:

wherein said self-indexing system further comprises a

stopword index distinct from said data collection;
wherein said self-indexing software product further
indexes said stopword index; and

wherein said self-indexing software product further com-

prises stopword efficiency function software code:

wherein an end tagged dense code (ETDC) is assigned to
each stopword;

wherein the ETDCs assigned to each stopword and the
stopwords are stored in said stopword index; and

wherein an order of the stopwords is preserved in said
stopword index.

10. The self-indexing system as claimed in claim 9,
wherein said stopword efficiency function software code fur-
ther operates such that ETDCs are further assigned to bigrams

5

15

20

25

30

35

40

45

50

55

60

65

14

comprised of stopwords and the ETDCs assigned to each
bigram and the bigrams are stored in said stopword index.

11. The self-indexing system as claimed in claim 5:

wherein said data collection comprises a plurality of field

types and a sub-index for each field type; and

wherein said self-indexing software product further com-

prises multiple field function software code:

wherein an end tagged dense code (ETDC) is assigned to
each of said field types of said data collection; and

wherein when a value corresponds to one of said field
types, the value is replaced by the ETDC assigned to
said field type and stored in said sub-index for said
field type.

12. The self-indexing system as claimed in claim 5, further
comprising a persistence function software product for
achieving persistent storage of the word-based wavelet tree
using a directory structure with an encoding as a path.

13. A method for self-indexing a data collection compris-
ing a plurality of documents, said method comprising the
steps of:

accessing the data collection, wherein the data collection is

represented by a word-based wavelet tree comprising a
plurality of nodes;

searching the word-based wavelet tree, said searching step

comprising the steps of:

caching a last found position and occurrence count of a
symbol on each node level of the word-based wavelet
tree for a particular symbol lookup; and

using a select function to call only on data to the right of
the last found position;

organizing documents with uniform resource identifier

(URI) addresses, said organizing step comprising the

steps of:

indexing a data array comprising at least one element,
wherein each of the at least one element corresponds
to a document within the data collection with a URI
address, wherein each of the at least one element
comprises a start position of the document within the
data collection, a length of the document, and a URI of
the document;

sorting the data array based on the start positions of each
of the at least one element;

executing a URI efficiency function at a position in the
word-based wavelet tree; and

providing access to the at least one element of the data
array that corresponds to the position in the word-
based wavelet tree upon performing said executing
step; and

decoding a document from the word-based wavelet tree

back into its original representation, said decoding step

comprising the steps of:

creating a hash table, wherein a key of the hash table is
apointer value of a node and a corresponding value of
the hash table is a rank at the pointer value;

traversing a node for decoding;

consulting the hash table each time a node is traversed;

increasing the rank in the corresponding value of the
hash table if the traversed node is indicated in the key
of the hash table;

creating a new entry in the key of the hash table for a
pointer value of the traversed node if the traversed
node is not indicated in the key of the hash table; and

calculating and storing a rank of the pointer value in the
value of the hash table corresponding to the new entry
in the key of'said hash table if the traversed node is not
indicated in the key of the hash table.

US 8,392,433 B2

15

14. The self-indexing method as claimed in claim 13, fur-
ther comprising the step of storing uncompressed words on
leaf nodes of the wavelet tree.

15. The self-indexing method as claimed in claim 13, fur-
ther comprising ranking documents within the data collec-
tion, said ranking step comprising the steps of:

sorting query terms comprising a rarest query term and at

least one non-rarest query term by occurrence within the
data collection;

counting the rarest query term with term frequency;

searching for documents including the rarest query term;

performing a probabilistic check for the non-rarest query
terms when a document including the rarest query term
is found;
searching for a first occurrence of each non-rarest query
term if the probabilistic check indicates a likelihood of a
presence of the non-rarest query terms; and

performing a probabilistic check for the non-rarest query
terms on a next document including the rarest query term
if the probabilistic check does not indicate a likelihood
of a presence of the non-rarest query terms.

16. The self-indexing method as claimed in claim 13, fur-
ther comprising the step of assigning a next available end
tagged dense code (ETDC) from an ordered list of ETDCs to
a previously unseen word.

17. The self-indexing method as claimed in claim 13, fur-
ther comprising the step of separating stopwords from the
data collection, said separating step comprising the steps of:

20

25

16

assigning an end tagged dense code (ETDC) to each stop-

word,;

storing the ETDCs assigned to each stopword and the

stopwords in a stopword index distinct from the data
collection;

indexing the stopword index; and

preserving an order of the stopwords in the stopword index.

18. The self-indexing method as claimed in claim 17,
wherein said separating stopwards step further comprises the
steps of:

assigning ETDCs to bigrams comprised of stopwords; and

storing the ETDCs assigned to each bigram and the big-

rams in the stopword index.

19. The self-indexing method as claimed in claim 13, fur-
ther comprising the step of providing multiple fields, said
providing step comprising the steps of:

assigning an end tagged dense code (ETDC) to each field

type of the data collection;

creating a sub-index for each field type;

replacing a value corresponding to a field type with the

ETDC assigned to the field type in said assigning step
when the value corresponds to a field type; and

storing the ETDC in the sub-index for the field type.

20. The self-indexing method as claimed in claim 13, fur-
ther comprising the step of storing the word-based wavelet
tree persistently by using a directory structure with an encod-
ing as a path.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,392,433 B2 Page 1 of 1
APPLICATION NO. : 13/086571

DATED : March 5, 2013

INVENTORC(S) : Amund Tveit

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the title page, item (74) Attorney, Agent or Firm should read:

(74) Catherine Napjus, Michael J. Perssor
Lawson Persson & Weldon-Francke, PC

Signed and Sealed this
Twenty-eighth Day of January, 2014

Decbatle X Loa

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,392,433 B2 Page 1 of 1
APPLICATION NO. : 13/086571

DATED : March 5, 2013

INVENTORC(S) : Amund Tveit

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page, insert item (73)

--AtBrox, SA (Trondheim, Norway)--

Signed and Sealed this
Thirteenth Day of May, 2014

Decbatle X Loa

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,392,433 B2 Page 1 of 1
APPLICATION NO. : 13/086571

DATED : March 5, 2013

INVENTORC(S) : Amund Tveit

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page, “item (76)” should read --item (75)--.

On the Title Page, insert item (73)

--AtBrox, SA (Trondheim, Norway)--.

This certificate supersedes the Certificate of Correction issued May 13, 2014.

Signed and Sealed this
Tenth Day of June, 2014

Decbatle X Loa

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office

